Facial Emotion Detection Using Convolutional Neural Networks and Representational Autoencoder Units

نویسنده

  • Prudhvi Raj Dachapally
چکیده

Emotion being a subjective thing, leveraging knowledge and science behind labeled data and extracting the components that constitute it, has been a challenging problem in the industry for many years. With the evolution of deep learning in computer vision, emotion recognition has become a widely-tackled research problem. In this work, we propose two independent methods for this very task. The first method uses autoencoders to construct a unique representation of each emotion, while the second method is an 8-layer convolutional neural network (CNN). These methods were trained on the posed-emotion dataset (JAFFE), and to test their robustness, both the models were also tested on 100 random images from the Labeled Faces in the Wild (LFW) dataset, which consists of images that are candid than posed. The results show that with more fine-tuning and depth, our CNN model can outperform the state-of-the-art methods for emotion recognition. We also propose some exciting ideas for expanding the concept of representational autoencoders to improve their performance. 1. Background and Related Works The basic idea of using representational autoencoders came from a paper by Hadi Amiri et al. (2016) and they used context-sensitive autoencoders to find similarities between two sentences. Loosely based on that, we expand that idea to the field of vision which will be discussed in the upcoming sections. There are works that used convolutional neural networks for emotion recognition. Lopes et al. (2015) created a 5-layer CNN which was trained on Cohn – Kanade (CK+) database for classifying six different classes of emotions. A lot of preprocessing steps such spatial and intensity normalization were done before inputting the image to the network for training in this method. Arushi and Vivek (2016) used a VGG16 pretrained network for this task. Hamester et al. (2015) proposed a 2-channel CNN where the upper channel used convolutional filters, while the lower used Gabor-like filters in the first layer. Xie and Hu (2017) proposed a different type of CNN structure that used convolutional modules. This module, to reduce redundancy of same features learned, considers mutual information between filters of the same layer, and processes the best set of features for the next layer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

The University of Passau Open Emotion Recognition System for the Multimodal Emotion Challenge

This paper presents the University of Passau’s approaches for the Multimodal Emotion Recognition Challenge 2016. For audio signals, we exploit Bag-of-Audio-Words techniques combining Extreme Learning Machines and Hierarchical Extreme Learning Machines. For video signals, we use not only the information from the cropped face of a video frame, but also the broader contextual information from the ...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder

We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos includi...

متن کامل

Deep Convolutional Neural Networks for Smile Recognition

This thesis describes the design and implementation of a smile detector based on deep convolutional neural networks. It starts with a summary of neural networks, the difficulties of training them and new training methods, such as Restricted Boltzmann Machines or autoencoders. It then provides a literature review of convolutional neural networks and recurrent neural networks. In order to select ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1706.01509  شماره 

صفحات  -

تاریخ انتشار 2017